
ArchiveXojo Manual
 

ArchiveXojo Manual 1
Introduction 1
What is Provided 2
Installing the Archive Xojo System 2
Learning to Use the Archive Xojo System 2

Help 3
Terminology 4

Code Listing or Handler 4
Method 4

Updating Xojo 4
Workflow 4
ArchiveXojo Database 6
ArchiveXojo – Location of Files on Disk 7
ArchiveXojo – Time Stamps 7

ArchiveXojo Menu Bar 7
Add 7

Import Code from XojoInfo Text File 7
Import Entire Xojo Project 8

View 8
Code Listing 8
Version - possibly to be introduced in the future 10
Import Log 10
Notes 10

Report 10
Characters Words Lines 10

Delete 11
Code Listing 11
Thin Out Stored Methods 11
Duplicate… 12

Export 12
Multiple Code listings 12

Newer Version in Other Project 13
Methods Unique to Project 13
Snapshot 14
GIT 14

Misc 14
User Preference 14

Advanced User 16
What would need to be modified 19

Appendix 20
Kaleidoscope - Black Pixel 20
Contact 21
Screenshots 22

Search Listing Window 22
Code Window 23
Code Size Report 24
Code Versions 25

�1

Introduction
Archive Xojo System is the composite of several things. It is a version control

system. It is a project documentation tool. It is a central code repository making
it easy to find and reuse code created in any of your Xojo projects.

Archive Xojo System stores code, as it is being developed, into an independent
text file (XojoInfo.txt). At intervals, you can bring the content of this text file
into the ArchiveXojo database.

Storing all your code changes as you work, the use of Archive Xojo System
removes some of the anxiety inherent in altering code.

What if there is some bad Xojo crash during development session? Well, you
have your code saved as text files. What if you embraced some new idea and
enthusiastically set about refactoring existing code and then realized that it was a
bad idea? Well, you have a bread crumb trail that basically allows you to back up
from what turned out to be a mistake.

This is a great comfort and enhances your ability to be agile and move quickly
with development. You can go back to any previous version of an individual bit of
code.

Archive Xojo System is also a resource. All your old code from all your projects is
available in one place for possible reuse in new projects. Refactoring old code and
reusing old code is part and parcel of being a Xojo programmer. The
ArchiveXojo database has all the tools of a database to find and grab bits of
your previous work.

The Archive Xojo System relies on AppleScript for a part of its functionality so is
provided only for users of the Mac. The ArchiveXojo database technically is
dual platform and possible in the Windows environment, but requires licenses
that I do not have and cannot afford for a freeware offering.

The ArchiveXojo database comes as an “empty” database. You fill it with your
code from any or all of your Xojo projects.

�2

What is Provided
Archive Xojo System is available as a zip file from Bearboat. That zip files

contains:

1. ArchiveXojo database

2. Xojo IDE script (FormatCode) to “pretty format” the code in the foremost
Xojo window (Cowgar)

3. Xojo IDE script (GrabAndAppend) to place code from the foremost Xojo
window into the Clipboard along with a small amount of metadata. It fires up
the AppleScript (CaptureXojoCode) and passes this information on to that
script.

4. AppleScript file (CaptureXojoCode) does some further processing, and finally
appends the code and metadata to the XojoInfo.txt text file.

Installing the Archive Xojo System
There is a separate document (InstallationArchiveXojo) that describes this

process. The installation is a bit fiddly, particularly for someone who has never
used IDE Scripts. The ArchiveXojo database itself can be placed in the
Applications folder. There are two IDE Scripts that have to be placed in the
Scripts folder of the the user’s current version of Xojo. The AppleScript file
(CaptureXojoCode) has to be placed in some “reasonable” location and then one
of the IDE scripts (GrabAndAppend) has to be edited to “tell” that script where
your version of CaptureXojoCode has been stored. This process is described in
the InstallationArchiveXojo.

Learning to Use the Archive Xojo
System
There are two learning resources: this Manual and Help windows contained in

the application itself. The whole thing is not very complicated.

�3

Help
Many windows in the ArchiveXojo database application have an orange ? in

them. Click on the ? to show a contextual help window.

�4

Terminology

Code Listing or Handler
In the Xojo IDE, you write code in a code editing window. The contents of one of

these code editing windows, including its parameters and return values if
applicable, is considered a single code listing or a handler. These are what make
up the individual records in the ArchiveXojo database. Sometimes this is
informally referred to as simply “code” if the meaning is clear in context.

Method
In different programming languages, the word method tends to connote slightly

different things, but here I am referring to the code that Xojo refers to as
methods, be those part of a class or a window or a module. Methods are a subset
of code listings. In Xojo-speak they include functions.

Updating Xojo
When new versions of Xojo are deployed by the user, the provided IDE scripts

have to be copied into the IDE Scripts folder of that new version of Xojo.

Workflow
When new code listings are created or modified, the user fires off an IDE Script

(GrabAndAppend), generally by just typing a hot key that has been assigned to
that script. That script grabs the code in the current window and saves its current
state to a text file called XojoInfo.txt. This file is stored in a folder called
_ArchiveXojo in a location specified by an AppleScript (CaptureXojoCode). By
default that location is the Desktop. So the path is: ~/Desktop/_ArchiveData/
XojoInfo.txt

In addition to the code itself, some metadata is also automatically stored in this
text file. The date and time, the name of the Xojo project etc.

�5

How often should the developer fire off the IDE Script? I do it whenever I plan to
run Xojo to test my modified code or when I have modified and am preparing to
leave some code window. I do it often before I am going to try some new, bold
change in my code. Do it often! There is no penalty. The ArchiveXojo database
easily handles dealing with many, many versions of code. The ArchiveXojo
database will avoid importing exact duplicate code. It is always possible, but
seldom really necessary, to selectively delete code versions from the database in
the future should you desire. So basically, do not hesitate to fire off the IDE Script
at will.

At some flexible interval, perhaps after the developer has completed some “task”
or when the XojoInfo.txt is getting “big” or when there is a need to refer to the
versions of code contained in that file, the developer imports the contents of this
file into the database. The text file itself is human readable in a pinch, but its
content is more approachable after it has been brought into ArchiveXojo.

In this way, the user builds a database of all versions of all the code that he is
creating in all his Xojo projects. That ArchiveXojo database become a resource
for developing further code. If some weird crash occurs in the course of
development, most of your work will be retrievable from the XojoInfo.txt file
that has been tracking your changes while you work.

NOTE:

The IDE Script, (GrabAndAppend), contains the (FormatCode) IDE script -
available do to the efforts of Jeremy Cowgar. The FormatCode script makes the
formatting not only “pretty” but more uniform which makes it easier to see the
real differences between code versions. If the individual user does not like this
formatting, he could remove the one line of code from the GrabAndAppend script
that calls the FormatCode script.

You should be aware of one little thing. There is a “bug” in the FormatCode script
related to the fact that it does not handle characters that are “outside” the ASCII
range. Such characters will not occur in your code itself, but could occur in a
comment or a string. So a character such as bullet, • , or a ¢ , or a § , etc. can
disrupt the proper functioning of the FormatCode script and can cause drop out
of a couple of characters from the saved version. I tend to avoid these characters,
but if it becomes a major problem for you it is possible to remove the line of code
from the GrabAndAppend script that calls the FormatCode script or to have two

�6

versions of the GrabAndAppend script, with and without the call to the
FormatCode script. If these two versions were assigned different shortcuts, these
could be called selectively to deal with some particular handler code that might
have a lot of characters out of the ASCII range.

ArchiveXojo Database
 The XojoInfo.txt text file will store all the versions of all the code created by

the programmer. The text file is human readable. You could let this file just get
bigger indefinitely and just use a text editor to search it for what you needed. But
eventually, as it grows, it becomes unwieldy.

When the developer decides the time is right, she runs the ArchiveXojo
database and imports all the contents of this text file into the database.

Open this database and go to the Add menu. Select Import Code from XojoInfo
Text File and navigate to the XojoInfo.txt text file (it will be in a folder
_ArchiveXojo). Open the text file and all the individual versions that have been
stored here will be imported into the database. The XojoInfo.txt file itself,
having served its purpose, will be deleted. When changes in the code are made in
the future, a new XojoInfo.txt text file will be automatically created and the
cycle can begin anew.

Meanwhile, the ArchiveXojo database will allow you to search and copy and
print all these code versions with the tools inherent in a database. When using
ArchiveXojo, the code from a multitude of Xojo projects is all available in one
location.

If a brand-new project is created, it is all very simple. All of the versions of all of
the code in that database as they are being created can end up being entered into
the ArchiveXojo database as described above.

However if a pre-existing Xojo project exists, built before the use of the Archive
Xojo System, it is usually desirable to bring the existing code into ArchiveXojo.
A tool to accomplish this is provided. Create a folder and save the pre-existing
Xojo project in text format (Save As Xojo Project). Under the Add menu, select
the menu item Import Entire Xojo Project and specify the folder. ArchiveXojo
will scan the folder, find all the code within it, and bring it into the database.

�7

ArchiveXojo – Location of Files on Disk
Much of the functionality of ArchiveXojo involves creating various files,

derived from the code archive, that are useful to the programmer and saving
them to the hard disk. Small text files exported from ArchiveXojo are
commonly simply created on the Desktop or the RootFolder for ready and
immediate access. More complicated text files or folders of text files are created
within the RootFolder.

The user can change the RootFolder in User Preferences.

ArchiveXojo – Time Stamps
 A common convention of this program is to prefix files or folders with a

timestamp. This is generally of the form YYMMDD_HHMM. For example, a file
created on October 27, 2014 at 10:33 PM will be prefixed - 141027_2233. This
naming convention assures that files are arranged in the Finder in chronological
order.

ArchiveXojo Menu Bar
Here is a quick run-through of the Menu Bar of ArchiveXojo to provide a

summary of the functions of this database.

Add

Import Code from XojoInfo Text File
This menu item is used to import code listing versions from the XojoInfo.txt

file.

When the file is imported, its contents end up in ArchiveXojo, and the file is
erased from disk. It will be automatically recreated when the user modifies and
creates new code in Xojo projects.

�8

Import Entire Xojo Project
A Xojo project that has been saved in text format in some folder can have all its

code imported in one fell swoop into ArchiveXojo. The intent would be so do
this once for an existing project and have subsequent data entered by importing
from the XojoInfo.txt file.

It can take a minute or two to import a large Xojo project using this menu item.

Technically, since ArchiveXojo avoids importing duplicate records, you could
repeatedly import an entire project and build up your versioned database in this
way. It makes things initially simple, because most of the setup described in the
document InstallationArchiveXojo is unnecessary.

For example, using this approach, every week you could import the current state
of your code from a saved text format version. Only handlers that had changed
since that last import would actually be brought in, since duplicates are ignored.
While some might be content with this, it is not really how the Archive Xojo
System was designed. The versioning would not be as fine grained. The date/time
stamps would be relatively crude (simply representing the time that the code was
imported rather than when it was actually modified). The “bread-crumb” trail
back into the past would be less complete.

View

Code Listing
The heart of the program is the ability to view all of the code listing versions that

have been captured. Selecting this menu item provides a list of all of the code
listing versions that exist in the database. In the listing form, across the top, are
text entry boxes and pop-ups and checkboxes that act as filters on the list so the
code listings visualized can be winnowed down to those desired. This filter area
exists as a region of yellow and green occupying the top of the form. After
changes are made in the filters, the user has to wait for a few seconds for the
filtering to take effect.

�9

It is possible to search within the text of a method. Two text entry boxes are
available. If One Line is checked then the contents of both the text entry boxes
have to appear somewhere in the same line for a match to occur.

When searching in the text of a code listing, there is a special technique to search
for a complete word. Surround the word with spaces in the text entry box.
SpaceSinSpace (Sin) will find a code listing with the line { answer = Sin(number) }
because the search will be modified to look for complete words and Sin appears
as a complete word in the line. The search will not find code with the line { sum =
2 + Single }.

Double-clicking on any listed method opens a window containing the code of
that method. On the left side is the code with the comments. On the right side,
the code with all the comments stripped out is provided.

From this window, it is possible to do a variety of things with that code. It can be
placed on the Clipboard. It can be exported as a text file to the Desktop (or
RootFolder). A search box allows highlighting any particular string that occurs in
that code.

Handler code from Xojo will be “wrapped” with something like Sub
name_method … End Sub. These first and last lines are not appropriately pasted
into another Xojo handler window. With Xojo, the name information for a
method is entered elsewhere. If the goal is to paste code into a Xojo handler code
window, hold down the Option-key when clicking on the Clipboard button. This
will exclude the first and last lines of the handler code from what is placed in the
Clipboard.

If there are multiple versions of a particular code listings, there will be a button,
Compare Versions (n), that will open a new window that provides access to all the
versions of that single code listing that exist in ArchiveXojo, possibly from
multiple projects. The window will show two versions of the code, the older on
the left.

It can be hard to find the differences between two versions of code. It may
require exporting the text of the two versions to text files and comparing them in
an application that has DIFF functionality (can compare two text files and
indicate all the differences between them).

�10

On the left side of the window there is a colored circle with a percentage
indicating just how similar the two versions are. If you click on that circle, the
lines of code that are different, one version to the other, will show in orange text.
This will often suffice to draw your eye to the differences of the versions without
having to launch a full-strength DIFF application for a more complete evaluation.

Version - possibly to be introduced in the future
This menu item offers slightly different functionality than Method. Only

methods that have multiple versions are accessible through this menu item. The
user selects a particular method and that method is opened in the form that
shows all the versions of that selected method.

Import Log
The import log tracks the date and time that records are imported into

ArchiveXojo.

When you import methods, you are given an opportunity to store a comment
about the methods that have just been imported. If you do not want bother with
this extra step, then the dialog box can be turned off in the user preferences.

Some might find it useful to record a comment when some computing subtask
has been completed and the code related to that subtask imported into
ArchiveXojo. This gives the user date/time stamped notes on the progress of
coding (similar to the comments that can be left in GIT with every commit).

Notes
View and create notes. You can use the ability to store notes any way you want.

There is no need to make any notes at all.

Report

Characters Words Lines
The user selects a particular project. The number of characters, words, and lines

in that project is provided. It is possible create a change over time look at these
metrics.

�11

Delete

Code Listing
It is possible that one might want to delete code listings from the database. Here

the user can manually select code listing versions to remove from ArchiveXojo.

Thin Out Stored Methods
Commonly, when working on the code of a method, a large number of versions

will be generated by the text/edit cycle. In itself, this is not a big problem.
Certainly, the ArchiveXojo database is capable of holding a very large number
of versions. Nonetheless, some users might consider this to be uncomfortably
cluttered, and this menu item allows an “intelligent” removal of versions that are
separated by very short period of time.

The algorithm for this removal is that the most recent version is preserved and
then everything within the time period chosen is removed. Then the next earlier
version is preserved and then everything within the time period of that version is
removed. Below is an attempt to show this algorithm graphically with a 1 hr
period selected as an example.

Thinner (1 hr)Time Line

Hrs
1 432 987

Hrs
1 432 9876

6

�12

Typically code development occurs in spurts and versions of a particular method
might be distributed as seen in the example. After the thinning is applied, the
versions shown in gray are deleted.

Duplicate…
Sometimes duplicate code will be saved in the ArchiveXojo. This occurs when

the identical code listings exists in multiple databases that are all being tracked
by ArchiveXojo. Again, this is not really a problem. By default, ArchiveXojo
stores code with identical content if it comes from different projects. But if this
style does not suit you, this menu item offers a tool to remove such duplicates
and get rid of this redundancy.

ArchiveXojo avoids storing identical code from the same project. Subtle
differences such as capitalization suffice to make two versions not identical.

Export
ArchiveXojo is a repository of lots of code that can be exported in various ways

as text files. These can be used to help the programmer with current and future
products.

Multiple Code listings
Under the View menu, the Code Listing menu item allows the export, to text

files, of the code of individual code listings. But there is also a time that it is
useful to specify a large group of methods for which you want to have the code as
text files. This menu item provides this functionality.

There are buttons in the window that determine what type of file(s) will be
created out of the selected methods.

�13

Newer Version in Other Project
In the course of refactoring and hopefully improving code, it can come to be that

a code listing used in multiple other databases is improved in the project
currently under development. Perhaps you would like to consider updating these
other projects but in the moment, you simply prefer to continue to perfecting the
project currently being worked on.

At some later date, the developer may find himself working on another database.
The thought kicks around in your head that there is an “improved” version of
various bits of code that exist elsewhere which are more recent and presumably
“better”. This menu item helps in discovering such methods.

Methods Unique to Project
Some developers maintain a dummy project that contains many methods that

have been found to be useful in other similar projects. Future projects might start
as extensions of this dummy project. It may come to pass that the developer
wants to know what methods in this new project are unique to it, i.e. not methods
inherited from the dummy project. This menu item helps in identifying such code
listings.

This button… Does this…

Export Simple Text
Files

Exports a folder full of simple text files with all the selected
methods as individual files.
To export all the selected methods into a single text file use
checkbox One Document. The single text file created will
have a table of contents at the beginning. In this way, you
could, if you wished, create a single text file that has the
most recent version of all your code as one document. It is a
form of backup, a source for copy/paste and a place where
code can be reviewed. An example of this kind of file can be
seen in the appendix.

�14

Snapshot
Select a particular database and then specify a date. Click the button, Create

Snapshot, and a text file will be created that contains all the code listings for that
project as they existed on the date specified. If you create multiple text files with
different dates, they can be compared with a DIFF tool such as Kaleidoscope to
see the differences between the state of the project at different times.

GIT
At intervals determined by the user, the code from a chosen project can be

placed as a collection of text files into a folder, GIT_Xojo in the Documents folder
(you can specific an alternative location in User Preferences). A user that is
familiar with GIT can designate this folder as a Repository and changes in that
code overtime can be recorded in GIT.

When you do a GIT export, by default it exports the code as it exists at the
present time. It is possible to adjust this by adjusting date/time controls to do an
export of the code as it existed at some time in the past.

This would only rarely be useful. Perhaps if you worked on two distinct “things”,
one a week ago and another in the last week, you might want to “split” this work
into two groups in your GIT time-line and this function would enable that. All
that work may have been imported into Archive Method in one import, but the
export into your GIT repository would be divided into two by adjusting the date/
time control that is provided.

This is a rudimentary use of the GIT tools. GIT is a big topic and one well beyond
the scope of this discussion.

Misc

User Preference
Root Folder

The user can decide where to place the files that are created by ArchiveXojo.
On the Desktop (which is the usual, or at least default choice) or in a subfolder of
the Documents folder called _Athenaeum or in any folder that the user decides
to designate.

�15

Even if you prefer exporting most files to a custom root folder, you might prefer
exporting the text of single methods directly to the Desktop where they are
readily accessible. There is a checkbox, Export Single Method Text to Desktop, to
enable that preference.

GIT
For those familiar with GIT or interested in GIT, there is an option to create a

folder on the local hard drive to which the most recent version of the text of
methods can be exported whenever desired. ArchiveXojo simply creates that
folder. Here the user determines where that folder will reside.

The user must use GIT tools to designate that folder as a GIT repository that GIT
is “watching” so that versions of all the methods can be tracked by GIT. For those
that pursue this, one has, in effect, a second version control system for the Xojo
code you develop.

Alerts
Many Alert boxes appear to inform the user of various things in the course of

using ArchiveXojo. By default, many of these Alert boxes are self-dismissing.
What is meant by this is that these small windows will go away on their own
without the user actually having to do something (click on the Done button).

There is a countdown area showing just how much longer the Alert box will
remain. If you click on that countdown, you get a little more time to read the
contents of the alert.

When you first start using the program, you tend to need a little more time to
absorb the content of these alerts. Later on, less time. The radio buttons here
allow adjustment of just how long these Alert boxes stay up.

These Alerts tend to run in their own process so they can be ignored. The user
can continue to work with the program and be confident that eventually they will
go away by themselves. This is occasionally convenient when doing something
like quickly creating text exports from old and never versions in the compare
code listing versions window.

If the user does not want to bother with having self-dismissing Alerts, they can
be turned off here.

�16

Notes
When a group of recent method versions is added, by default the user is provided

with an option to create and leave a note about the import. This is analogous to
the comments that are commonly created when committing versions with GIT.

If you do not find such comments to be useful, continually being asked whether
you want to create a note is likely to be annoying. This can be turned off here.

Updates
From time to time, it is possible that Bearboat will create updates for the Help

files. Bearboat will provide text files containing the relevant information. Click
on Update Help… to access and import those files.

Advanced User
If you are to some degree familiar with AppleScript and you are annoyed by the

particular location that the file XojoInfo.txt files ends up, you can change this.

This location ~/Desktop/_ArchiveXojoData/XojoInfo.txt is determined by the
AppleScript. The AppleScript decides what folder XojoInfo.txt is going to land in.

Lets look at the AppleScript. I have included the entire script below for
completeness and then I look specifically at the areas that would have to change.

Make sure that the folder _XojoArchiveData exists in the appropriate
location ###

Courtesy of JMicheelTX http://macscripter.net/viewtopic.php?
id=41721 #

Makes the initial folder on the Desktop
set newFolderPath to quoted form of (expandPath("~/Desktop/

_ArchiveXojoData"))

set cmdStr to "if [[! -d " & newFolderPath & "]]; then
mkdir -m 755 " & newFolderPath & "; fi"
do shell script cmdStr

makes a subfolder in the folder created above if you want or need

�17

set newFolderPath to quoted form of (expandPath("~/Desktop/
_XojoArchiveData/NewFolder"))

set cmdStr to "if [[! -d " & newFolderPath & "]]; then
mkdir -m 755 " & newFolderPath & "; fi"
do shell script cmdStr

on expandPath(pPathStr)
 local fullPath
 set fullPath to pPathStr

 if fullPath = "~" then
 set fullPath to (POSIX path of (path to home folder))
 else if fullPath starts with "~/" then
 set fullPath to (POSIX path of (path to home folder)) & text 3

thru -1 of fullPath
 end if

 return fullPath
end expandPath

Append the contents of the code on the current foremost window of
Xojo to the file XojoInfo.txt ###

set xojoClip to the clipboard
set newLine to return & return & "<newsave> * * * * * * *

* * </newsave>"
set briefDate to do shell script "/bin/date +%Y%m%d"
set briefTime to do shell script "/bin/date +%H%M%S"
set briefBoth to "<datetime>" & briefDate & "_" & briefTime & "</

datetime>"

set delta to ((time to GMT) / 36)
set deltaTagged to "<timezone>" & delta & "</timezone>"

set xojoClip to newLine & return & briefBoth & return & deltaTagged &
return & xojoClip

set this_file to (((path to desktop folder) as string) &
"_ArchiveXojoData:XojoInfo.txt")

�18

my write_to_file(xojoClip, this_file, true)

on write_to_file(this_data, target_file, append_data)
 try
 set the target_file to the target_file as string
 set the open_target_file to open for access file target_file with

write permission
 if append_data is false then set eof of the open_target_file to 0
 write this_data to the open_target_file starting at eof
 close access the open_target_file
 return true
 on error
 try
 close access file target_file
 end try
 return false
 end try
end write_to_file

Empty the clipboard
tell application "System Events"
 try
 set the clipboard to ""
 on error err_message
 display dialog err_message
 end try
end tell

Tell user that AppleScript has done its job ###

#say "Finished!"
set variableWithSoundName to "Bottle"

display notification "Transferred to XojoInfo.txt" with title "Code Handler"
subtitle "Captured" sound name variableWithSoundName

�19

What would need to be modified

At start of the script, it makes sure that the folder _ArchiveXojoData exists. By
default this location is on the desktop. The advanced user could change this line
to be another path. If the path contains subfolders, each subfolder needs to be
checked for its “existence”, one after another. There is some commented out code
that shows how to do make a subfolder.

Make sure that the folder _XojoArchiveData exists in the appropriate
location ###

Courtesy of JMicheelTX http://macscripter.net/viewtopic.php?
id=41721 #

Makes the initial folder on the Desktop
set newFolderPath to quoted form of (expandPath("~/Desktop/

_ArchiveXojoData"))

set cmdStr to "if [[! -d " & newFolderPath & "]]; then
mkdir -m 755 " & newFolderPath & "; fi"
do shell script cmdStr

makes a subfolder in the folder created above if you want or need
set newFolderPath to quoted form of (expandPath("~/Desktop/

_XojoArchiveData/NewFolder"))

set cmdStr to "if [[! -d " & newFolderPath & "]]; then
mkdir -m 755 " & newFolderPath & "; fi"
do shell script cmdStr

…

There is another area in the AppleScript that would be required to be changed as
well. This first part above makes sure that the folder exists. The next part actually
does the work of creating the text file XojoInfo.txt. This code exists in the middle
of the script.

�20

…
set delta to ((time to GMT) / 36)
set deltaTagged to "<timezone>" & delta & "</timezone>"

set xojoClip to newLine & return & briefBoth & return & deltaTagged &
return & xojoClip

set this_file to (((path to desktop folder) as string) &
"_ArchiveXojoData:XojoInfo.txt")

my write_to_file(xojoClip, this_file, true)

on write_to_file(this_data, target_file, append_data)
 try

…

Appendix

Kaleidoscope - Black Pixel
In the course of looking at multiple versions of code, the need will probably arise

to detect just what are the differences are between two versions. This can be hard
to do without computer assistance. ArchiveXojo itself offers a relatively
primitive form of this utility, but there are many third party utilities that can
provide a more advanced comparison.

Kaleidoscope by Black Pixel is one such program available on the Macintosh
(~$50.00). It is warmly recommended for this purpose. Differences are displayed
in an easy to understand window. It is easy and fast to bring two files into this
program for the comparison. I frequently will have the two versions of a method
sitting on the Desktop. I highlight them in the Finder and go to
Finder>>Services and select Open in Kaleidoscope which will open the

�21

appropriate comparison window in that program. You will probably find other
contexts (outside of ArchiveXojo) where this program can be useful.

Recently, the popular text editor, BBEdit, has greatly improved its display of text
differences when comparing files. The usefulness of this program for this purpose
has become more competitive with the Kaleidoscope.

If you use GIT and SourceTree (on Mac), Kaleidoscope can be designated an
external DIFF tool and work within SourceTree.

Contact

Author: Robert Livingston

Company: Bearboat

Email: rlivingston@me.com

Feel free to write me a note. I would like to improve this archiving system and
stamp out any bugs and improve the documentation.

If you have run into some problem — Write

If you have a suggestion — Write

If you have any comment, favorable or disparaging — Write

All communication is appreciated. One trouble with “free” software is that many
users tread lightly. They do not feel entitled to complain or mention bugs.
Frequently, they will just move on.

I would much prefer that users be more engaged and write. Bugs can be dealt
with which improves the experience for everyone. Areas of confusion in the
documentation can be clarified.

I cannot always address every suggestion, but I like to hear them.

mailto:rlivingston@me.com

�22

Screenshots

Search Listing Window
Lists the name and modification dates of code versions.

�23

Code Window
Displays a code listing with and without comments  

�24

Code Size Report
Reports on the size of the code over time.

�25

Code Versions
Differences highlighted in orange.

